镇康| 富民| 阿拉善右旗| 潼南| 阳新| 淇县| 米脂| 青河| 天安门| 邕宁| 博湖| 七台河| 钦州| 贵州| 聂拉木| 镇安| 齐河| 贺兰| 扬州| 驻马店| 东宁| 松溪| 洮南| 修文| 永春| 安徽| 永春| 衡水| 汉沽| 淅川| 化隆| 绍兴市| 汝州| 长沙| 宁海| 永济| 象州| 郧县| 任丘| 山西| 东营| 和龙| 霍山| 尼玛| 涿鹿| 舞阳| 马龙| 广平| 东兴| 柯坪| 楚州| 波密| 四会| 南沙岛| 贺州| 周口| 召陵| 阿勒泰| 南昌县| 延庆| 香港| 铜仁| 盐亭| 北安| 带岭| 凌云| 宾川| 镇宁| 纳溪| 慈利| 綦江| 清丰| 乌海| 井研| 革吉| 奉节| 友好| 荥经| 屯留| 黎城| 开原| 望谟| 加查| 虞城| 湄潭| 廉江| 吴中| 开阳| 璧山| 全椒| 宜君| 尉氏| 中江| 隆安| 泸水| 盐城| 阜平| 兴海| 理县| 哈密| 竹溪| 高青| 安顺| 姚安| 长治县| 贺兰| 潼南| 罗甸| 常熟| 汝南| 扎囊| 博鳌| 闻喜| 大通| 新野| 都匀| 鹿泉| 武昌| 黄山区| 得荣| 平陆| 崇左| 商河| 抚顺市| 镇雄| 凯里| 通辽| 洱源| 大冶| 沭阳| 道真| 仁寿| 甘肃| 淄博| 威信| 内丘| 古丈| 嵊泗| 巩义| 当阳| 高碑店| 承德县| 天安门| 肇东| 克拉玛依| 广安| 南山| 烟台| 乌马河| 文山| 岐山| 霞浦| 木垒| 青县| 贵港| 康马| 纳雍| 乐陵| 嫩江| 什邡| 桦甸| 保德| 东海| 长沙| 水城| 巴里坤| 芮城| 鄂州| 湾里| 高雄市| 南江| 新都| 薛城| 大同市| 咸宁| 扶沟| 江永| 乌审旗| 定州| 天水| 马鞍山| 普洱| 平泉| 靖州| 平安| 广汉| 绥江| 陕西| 连云区| 新蔡| 章丘| 房山| 雅江| 奇台| 无棣| 阿图什| 合川| 永年| 安县| 吴中| 于都| 政和| 江孜| 剑阁| 遂溪| 澄海| 云龙| 璧山| 乌拉特后旗| 谷城| 惠阳| 思南| 岫岩| 陆良| 兴业| 新城子| 夏河| 云集镇| 丰顺| 含山| 新巴尔虎左旗| 定襄| 铁山港| 且末| 克什克腾旗| 墨竹工卡| 凌海| 石景山| 连南| 靖宇| 鹰潭| 洪雅| 托克逊| 府谷| 紫云| 冀州| 讷河| 钦州| 台中市| 昂仁| 和龙| 天柱| 菏泽| 布尔津| 百色| 新宾| 阳谷| 云浮| 道孚| 无为| 阜阳| 陆良| 西固| 怀安| 扎囊| 孟连| 陆良| 单县| 吴江| 堆龙德庆| 阿克苏| 龙江| 上林| 文昌| 百度

医疗AI研发有哪些路径可循

刘志勇

2019-09-1709:37 来源:健康报网

放眼全球,人工智能(AI)方兴未艾,医疗健康成为AI开发炙手可热的重要领域。自2018年起,我国皮肤病学领域陆续发布了多款AI产品,在医疗AI研发的竞技场上大放异彩。

医疗AI研发,我们有哪些既有经验和路径可循?近日,记者专访了中日友好医院副院长崔勇教授,他是中国人群多维度皮肤影像资源库项目(CSID)项目发起人兼专家组组长,同时参与了皮肤AI应用的研发,从皮肤病学专业这个小切口进入,以其为样本,探讨医疗AI研发的个中奥妙。

应用场景聚焦提高基层诊断能力

为什么要研发一款AI产品?研发成功后能否落地推广?崔勇认为,AI很火,但在一片火热中更要对这些问题保持理性思考。

“我们来看看它可能是什么。”崔勇拿出智能手机,打开他参与研发的AI皮肤应用,用连接在手机上的便携式皮肤镜,对着记者手部的一颗深色丘疹拍了一张照片,图像上传至云端后,这款AI产品很快给出辅助诊断结果:良性,可信度98%;前3位最可能疾病包括,色素痣(可信度43%)、血管瘤(可信度43%)、皮肤纤维瘤(可信度14%)。点开每一项可能疾病,都有详细的疾病特征及诊断介绍。

2018年,我国皮肤疾病门诊量约2.4亿人次,但皮肤病专科医生仅有2.8万人,与巨大就诊需求相比,皮肤科医疗资源严重不足。同年,崔勇联手互联网公司完成的一项针对1000名各级医院皮肤科医生的在线调查显示,三甲医院医生对皮肤肿瘤良恶性诊断的正确率平均约为70%,而基层医院仅约为30%。崔勇说,常见病易误诊,皮肤肿瘤易漏诊,罕见病不认识,这就是我国基层皮肤病诊断面对的严峻现实。

“我国皮肤肿瘤的发病率以每年3%~5%的速度增长,其中黑色素瘤的5年生存率仅48%,而美国、日本分别达到93%和67%。除治疗药物疗效存在种族和遗传背景差异外,我国对于黑色素瘤的早期诊断不足是主要原因。同时,我国有银屑病患者700万人,白癜风患者1400万人,对这些疾病的病程评估手段不足,缺乏科学的防控指导,严重影响患者身心健康。”崔勇说,CSID专家组研发皮肤AI的初心,就是从高死亡率的疾病、高发病率的慢病入手,切实赋能基层医生,提高他们对于这些皮肤病的诊疗水平。

崔勇的构想远不止于此。“随着AI辅助诊断覆盖病种的增加、互联网技术的普及发展、覆盖全国的专科医联体建设,未来完全可以此为基础构建新型远程皮肤病学模式。”崔勇表示,他们研发的皮肤AI已在现实应用中取得了不错表现,投入基层医院使用半年来,辅助诊断了很多早期皮肤肿瘤,目前已开始筹备向国家监管部门正式申报医疗器械许可证。

多维度影像大数据是研发基础

算法和数据是AI研发的两大要素。可靠算法价值千金,优质数据更是千金难买。

皮肤病学是依赖形态学直观特征建立的学科,皮肤影像已经成为皮肤病辅助诊断和动态评估的重要手段。海量且高质量的皮肤影像数据是AI研发的基础,但长期以来,我国皮肤影像数据一直处于“孤岛林立”的状态。任何一家医院积累的数据,其广度、丰度、深度都远远不足以支撑AI开发。

2017年,崔勇、孟如松等牵头,联合我国皮肤病学界专家团队、互联网及数据技术团队,协同启动了CSID。截至目前,CSID已覆盖全国2000多家医院,基于相对标准的规范,收集了30多万组多维度皮肤影像资源。崔勇说:“多维度也是我们创造的一个概念,特指每一组数据资源都来自针对同一处皮损的多种皮肤影像技术,包括皮肤摄影、皮肤镜、皮肤CT、病理影像等,只有这样才能获得完整的皮肤病表型特征。”

“数据标注是AI研发的另一个关键环节。”崔勇说。针对皮肤影像数据的深度学习会受到非皮损区域信息的影响,干扰核心信息的读取,因此需要专业人员(主要是专业医生)对目标区域进行标注,更好地建立特定区域影像信息与疾病之间的对应关系。“将标注区域的诊断结果告诉AI,AI在大量重复学习图像共性特点的基础上,通过算法建立自己的诊断思路,这个过程就相当于将专家的诊断经验传授给AI。”

据悉,为了实现数据标注的规范化,项目组制定了皮肤病分类分级标准并申请专利,将皮肤病分为皮肤肿瘤和非皮肤肿瘤,将皮肤肿瘤分为良性、恶性、交界性3类,每一类又分为多个不同层级。“有了分类分级标准才能对影像数据进行规范标注,基于神经网络模式对标准化皮肤影像大数据进行深度学习,才能使AI具备对特定皮肤病作出分级分类判断的能力。”崔勇说。

研发和应用都离不开专家牵引

目前,崔勇参与研发的皮肤AI已进入2.0版本,能判断17种皮肤肿瘤的具体类型,皮肤肿瘤良恶性识别率达91.2%,疾病类型识别率达81.4%。“这两个数字已经远远高出三甲医院皮肤科医生的平均诊断水平,如果能在基层进行普及推广,将大大提高基层皮肤科医生的诊断水平。”崔勇介绍,除了用于皮肤肿瘤辅助诊断的AI产品外,基于CSID项目的皮肤AI,还包括针对白癜风、银屑病的两款慢病管理AI,“前者为面向医生的医用级AI,后两者可以提供给医生、患者分别使用”。

2018年,国家远程医疗与互联网医学中心皮肤科专委会、中国医学装备人工智能联盟皮肤科专委会联合牵头,建立了包括全国400家各级医院的皮肤影像中心网络。“这为AI的应用推广打下了组织基础。”崔勇说,通过多维度皮肤影像分析管理系统上传皮肤影像,基层医生可以在AI的协助下出具影像检查报告,实现基层检查、上级诊断。

“依托复旦大学附属华山医院医联体,皮肤AI应用跑了一圈数据,3个月时间里,基层医生共调用了3000多次AI,辅助做出了1万多份影像报告。”崔勇表示,对于构建新型远程皮肤病学模式而言,培养具备熟练使用皮肤影像设备能力的基层医务人员是必由之路。CSID依托全国皮肤影像中心网络已经构建了教育和能力认证平台,已培训并认证基层医院皮肤科医生3000多人。

回顾皮肤AI应用的研发历程,崔勇认为,专家主导、技术协同、资本融入,应该是医疗AI研发的可循模式。AI研发的方向和规划,产品的推广体系建设,都应由医学专家从临床需求的角度出发来把握,影像数据库和影像标注的质量控制,也必须依靠专家的指导来完成,“专家团队的缺乏是目前国内不少AI公司的共同短板”。

不久前,崔勇参与研发的皮肤AI应用成为国家卫生健康委统计信息中心评出的“医疗健康人工智能应用落地最佳案例”之一。崔勇说,CSID正在为其他医学AI的研发提供可参考的协同模式。

(责编:林成汉、权娟)


推荐阅读

6个原因或触发心脏病 10种状况最“伤心”   心脏,是人最重要器官之一,也是循环系统中的动力。一般“伤心”了,身体很受伤,咋办? 【详细】

气血不足五脏亏损 药食调理补气养血   气血不足也就是中医常说的气虚和血虚,常可通过身体的一些症状表现出来。中医认为,气血不足会使抗病能力下降,时间长了会影响人体健康状况。今天人民网健康与你聊聊补气养血的话题。【详细】


相关新闻


公交东场 潮州 太白街道 第二苗圃 天山砖厂 甘塘堡 田源乡 范刘 三滩乡
八盘水磨 烈山区 鄢陵 合江街道 四马桥镇 东兵马营 生产队 大夫营子乡 沙梨园
察汉营村 墨尔本金融管理学院 永利彝族乡 蓟县孙各庄满族乡 西坡 放牛沟村荒草地 石门街镇 初家 星海广场 规划新二街
https://www.whr.cc/bbsitemap.htm